TD : RECONNAISSANCE DE CARACTERES AVEC KNN

TD : RECONNAISSANCE DE CARACTERES AVEC KNN

(TD inspiré de CCINP-PSI-Info 2023)

La reconnaissance optique de caracteres (OCR) existe depuis de nombreuses années mais les
récents travaux d’intelligence artificielle (apprentissage profond) ont considérablement
augmenté les performances de la reconnaissance de documents.

L’objectif du travail proposé dans le sujet original est de découvrir différentes étapes de la
numérisation d’un document en explorant plusieurs algorithmes utilisés pour obtenir
finalement un document éditable conforme a I'original.

Les parties abordées dans le sujet sont les suivantes :

- Partie 1 : Acquisition d’'un document et pré-traitement dans le but d’obtenir une
image numérique pertinente ;

- Partie 2 : Reconnaissance du contenu qui correspond a I’extraction du texte et de sa
structure ;

- Partie 3 : Reconnaissance des caracteres par identification a I’aide d’une base de
données.

La reconnaissance de caracteres est une chaine de traitement compléete dont le KNN est
I'étape finale. Ce TD se concentre sur la reconnaissance des caracteres par identification
développée dans la partie 3. Voici un résumé des parties qui la précedent :

1) PARTIE 1 : ACQUISITION D’UN DOCUMENT

Le document est numérisé. Pour diminuer la taille du document afin de pouvoir plus
facilement le traiter, on réalise tout d’abord une conversion en niveaux de gris de I'image. La
formule utilisée pour déterminer la valeur d’un pixel gris en fonction des trois couleurs d’un
pixel (R rouge, G vert, B bleu) est la suivante :

pixGris =0,299-R+0,587-G +0,114-B
On applique ensuite une binarisation (seuil) pour n'avoir que du noir (0) et du blanc (255). La
difficulté de cette technique de binarisation est le choix de la valeur seuil pour des images

ayant des problemes d’éclairage. Le sujet aborde ultérieurement une technique de
restauration qui peut étre utilisée pour remplacer la binarisation par seuil standard.

Il) PARTIE 2 : RECONNAISSANCE DU DOCUMENT

Rotation : L'image scannée peut avoir un probleme de rotation qu’il convient de corriger. On
redresse donc I'image si elle a été scannée de travers en utilisant une matrice de rotation et
une interpolation bilinéaire pour éviter la pixellisation.

0 jn q
Pour faire tourner le point de coordonnées (i, j) L
autour du point O (centre de I'image) d’un angle a,
on applique une rotation a I'aide d’une matrice de o
rotation :

(ni - P/Z) _ (cosa sin a) (i - p/Z)

nj—q/2) \-sina cosa/\j—q/2

-

TD : RECONNAISSANCE DE CARACTERES AVEC KNN

Naivement, on pourrait penser que pour réaliser la rotation, il suffit de parcourir chaque
pixel de I'image initiale en lui appliquant la rotation définie précédemment. Mais les indices
étant des entiers, on se rend compte que certains pixels de la nouvelle image ne sont jamais
calculés et qu’il peut apparaitre des probléemes de dépassement de taille d'image :

Beauté, limpidite, pureté, sérénite...

L'algorithme de rotation consiste donc, pour chaque pixel de la nouvelle
image de coordonnées (ni, nj), a trouver ses coordonnées (i, j) par une
rotation d’angle —a dans I'image initiale. La position du pixel virtuel ainsi
trouvée est en fait un couple de réels (x, y). Le pixel virtuel est ainsi
entouré de 4 pixels dans I'image initiale dont les abscisses sont comprises o ®
entre int(x) et int(x)+1 et les ordonnées entre int(y) et int(y)+1.

Pour trouver la valeur du pixel virtuel, on utilise la valeur des 4 pixels voisins en réalisant une
approximation bilinéaire qui consiste :
- En prenant les deux pixels voisins de la premiére ligne, a trouver la valeur du niveau
de gris du pixel virtuel en supposant une évolution linéaire selon la coordonnée y
entre le pixel de gauche et le pixel de droite ;
- Afaire de méme en prenant les pixels de la deuxieme ligne ;
- Enfin en travaillant sur la coordonnée x, a supposer une évolution linéaire entre les
deux valeurs trouvées aux deux étapes précédentes.

Voici quelques TD disponibles sur le site de https://www.cpge-sii.com/informatique/itc1/ de
M. DEFAUCHY sur ces themes :

- TD « 7-2 - Détection de contours — Convolution »

- TD « 7-3—Transformations »

- TD « 7-17 - Recadrage projectif »

Segmentation : Apres rotation de I'image, on applique la segmentation. La segmentation
consiste a découper I'image en plusieurs 00
éléments de maniére a pouvoir ensuite traiter 250
chacun des éléments. Il faut dans I'image

pouvoir dissocier les lignes, les mots puis les
lettres. Lidée est de construire la liste du

nombre de pixels noirs par ligne (histogramme 100
horizontal) pour isoler les lignes de texte, puis
par colonne (histogramme vertical) pour isoler

Chaq ue cara Ctére 0 50 100 150 200 250 300 350 400
Histogramme de détection des lignes

En appliquant cette détection de ligne
directement sur I'image mal orientée, il en
résulte une erreur de détection. En effet, si on
observe I'histogramme dans ce cas, on constate
gu’il n’y a plus de zones avec des pixels blancs
détectées. Cela permet de détecter
automatiquement la bonne orientation en

o - o - - n =, travaillant sur la maximisation du nombre de 0.

Histoaramme de détection des lianes sur la fiaure mal orientée

200

150

18y

120

100

80 -

60 -

40 -

20 -

https://www.cpge-sii.com/informatique/itc1/

TD : RECONNAISSANCE DE CARACTERES AVEC KNN

Apres avoir séparé les lignes, en appliguant une méthode similaire, on peut extraire les
caractéres sur chacune de ces lignes :

B e a u t e ,

Restauration : Les images de caractéres peuvent étre bruitées compte tenu d’'une mauvaise
résolution ou de parasites apparaissant pendant un scan. De méme, la technique de
binarisation proposée initialement ne donne pas toujours un résultat correct si le seuil est
mal choisi. Le sujet propose alors d’étudier la méthode du flot maximal (ou méthode de la
coupe minimale) reposant sur la représentation par un graphe de I'image a restaurer est
souvent utilisée pour pallier ces probléemes.

I11) PARTIE 3 : DETERMINATION DES CARACTERES

Une fois les images de lettres isolées, il s’agit de reconnaitre la lettre correspondante.
Différentes méthodes peuvent étre employées. Le sujet étudie une méthode
d’apprentissage automatique basée sur les K plus proches voisins.

Le principe de cette méthode consiste a comparer chaque caractére a un ensemble de
caracteres définis dans une base de données.

On suppose qu’on dispose d’une liste fichiers_car_ref contenant les noms des fichiers
images d’un grand nombre de caractéres ayant des fontes proches de celles du texte scanné.
Le nom de chaque fichier est défini de la maniére suivante :

nomFonte + "_" + nomCatégorie + taillePolice + "_" + idSymbole + ".png"
Les catégories sont définies par la liste :
categories = ["majuscules","minuscules","chiffres", "special"]
Les symboles considérés sont définis par la liste :
symboles = ["ABCDEFGHIJKLMNOPQRSTUVWXYZ", "abcdefghijklmnopqrstuvwxyz",
"0123456789",".:,; ' (1?)éeacuéda"].

On compte 79 symboles différents. Exemple : Zurich Light BT_majusculesl18_10.png
pour la majuscule K de la police Zurich Light BT en taille 18.

lll.1. Installation des ressources pour le TD

Télécharger https://www.informatique-f1.fr/IA/TD2 KNN dataset.zip et extraire son
contenu dans votre répertoire de travail.

. . . base 11x79
Ce dossier contient I'ensemble des ressources d’'images
nécessaires pour entrainer et tester un classifieur KNN de base 41x79
reconnaissance de caracteres. |l regroupe des bibliotheques base_référence
contenant des symboles de la police de référence qui test_confusion
serviront a fabriquer des phrases de test et de polices B® construction_test mot.py
similaires. La taille des images est de 28x28 pixels. B TD1_Correction.py

B TD1_Sujet.py

https://www.informatique-f1.fr/IA/TD2_KNN_dataset.zip

TD : RECONNAISSANCE DE CARACTERES AVEC KNN

Le dossier « base_référence » contient 79 images (une par symbole) rendues avec la police
de référence (Zurich Light BT). Voici quelques exemples :

Zurich Light BT_majusculesl18_10.png
Zurich Light BT_chiffresl18_5.png
l Zurich Light BT_speciall8_7.png

v
Symboles de la fonte de K 5 ?

référence (Zurich Light BT)

Le dossier « base_11x79 » contient 11x79 images (les mémes 79 symboles rendus avec 10
polices supplémentaires visuellement proches de la référence). Voici quelques
exemples pour le symbole K :
Zurich Light BT_majusculesl18_10.png
Segoe UI Semilight_majusculesl8_10.png
l Calibri Light_majusculesl18_10.png

Symboles proches de la fonte de
référence (Zurich Light BT) K K K K

Sarahun Extralight_majusculesl8_10.png

Le script « construction_test_mot.py » assemble un mot de votre choix en copiant,
caractére par caractére, les images déja présentes dans le dossier « base_référence » vers
les dossiers « test_mot », afin que vous puissiez tester le KNN sur le mot que vous souhaitez
analyser, et cela avec une dégradation des symboles afin de simuler la numérisation et pré-
traitements. Nous utiliserons ce script un peu plus tard dans le TD.

L’objectif final du TD est de mettre en ceuvre un classifieur k-plus proches voisins (KNN) pour
reconnaitre automatiquement des caracteres, puis d’évaluer sa robustesse.

Les catégories et les symboles sont définis dans le fichier python de cette maniére :

Listes de symboles

categories = ["majuscules", "minuscules", "chiffres", "special"]

symboles = ["ABCDEFGHIJKLMNOPQRSTUVWXYZ", "abcdefghijklmnopgrstuvwxyz",
"0123456789",".:,; ' (1?)éeacuéna"]

On introduit la fonction suivante :

def lire_symbole_fichier(nomFichier: str) -> str:

car = nomFichier.split('_")
num = car[2].split('."')[0]

var = car[1][:1len(car[1])-2]
ind = categories.index(var)

return symboles[ind][int(num)]
On rappelle que pour une liste L, L.index(val) renvoie la position de val dans la liste L.

1. Indiquer ce que valent les variables car, num, var, ind et ce qui est renvoyé par la
fonction si nomFichier="Zurich Light BT_majuscules18_10.png".

TD : RECONNAISSANCE DE CARACTERES AVEC KNN

Toutes les images des caracteres de référence sont lues et stockées sous forme de tableaux
array. On définit un dictionnaire carac_ref dont les clés seront les symboles apparaissant
dans la liste symboles (par exemple "A", "a", ...). A chaque clé sera associée une liste de
tableaux array représentant des images.

La commande img=imread(nomFichier) permet de lire le fichier image nomFichier et de
stocker le tableau array a deux dimensions qui représente I'image dans la variable img.

2. Ecrire la fonction lire_donnees_ref(dossier:str, fichiers_car_ref:list)->dict
qui prend en arguments le dossier et la liste des noms de fichiers images contenus dans
ce dossier fichiers_car_ref et qui renvoie le dictionnaire contenant tous les tableaux
catégorisés.

Tester : caract_ref=lire_donnees_ref("base_11x79",
liste_images_a_lire)

>>> caract_ref.keys()

dict_keys(['K', 'P', * ?'])

>>> len(caract_ref['K'])

3

>>> imshow(caract_ref['K'][0],cmap="gray",vmin=0,vmax=1)

%= % >>> plt.show()

Un caractere a identifier est également stocké sous forme d’un tableau array nommé
carac_test. On suppose que les dimensions de ce tableau et de tous les tableaux du
dictionnaire carac_ref sont les mémes.

La méthode d’identification utilisée est celle des K plus proches voisins. Elle consiste a
calculer une distance entre I'image du caractére a identifier et toutes les images de
référence. En notant (i, j) les coordonnées d’un pixel dans le tableau représentant I'image,
pi; le pixel associé a I'image du caractere a identifier et g;; celui d’un caractere de référence,
on calcule pour chaque caractére de référence la distance :

d= Z(pij - Qij)z
Lj

Les distances d sont stockées dans un dictionnaire distances oU, pour chaque clé égale a
un symbole de la liste symboles, on associe une liste de distances pour chaque image de
référence de ce symbole.

3. Ecrire une fonction distance(iml:array, im2:array)->float qui calcule la distance
entre les deux images iml et im2 supposées de méme dimension.

Le fichier source importe la librairie numpy avec la commande : import numpy as np.
Cette librairie contient une fonction « linalg.norm » dont voici la définition :

numpy.linalg.norm : linalg.norm(x, ord=None, axis=None, keepdims=False)
Matrix or vector norm. This function is able to return one of eight different matrix
norms, or one of an infinite number of vector norms (described below), depending
on the value of the ord parameter.

TD : RECONNAISSANCE DE CARACTERES AVEC KNN

4. Ecrire la méme fonction distance_np(iml:array, im2:array)->float maisen
utilisant la fonction np.linalg.norm() de la librairie numpy.

Tester : caract_test=lire_donnees_ref("base_référence",
["Zurich Light BT_majuscules18_10.png"1)

>>> distance(caract_ref['K'][0],caract_ref['K'][0])
0.0

>>> distance(caract_test['K'][0],caract_ref['K'][0])
8.355455053460023

>>> distance(caract_test['K'][0],caract_ref['K'][1])
8.961496430503434

>>> distance(caract_test['K'][0],caract_ref['K'][2])
9.905886863045481

>>> distance_np(caract_ref['K'][0],caract_ref['K']1[0])
np.float32(0.0)

>>> distance_np(caract_test['K'][0],caract_ref['K']1[0])
np.float32(8.355455)

>>> distance_np(caract_test['K'][0],caract_ref['K'][1])
np.float32(8.961497)

>>> distance_np(caract_test['K'][0],caract_ref['K'][2])
np.float32(9.905888)

Pour information, les distances calculées dans les exemples précédents sont les suivantes :

caract_ref['K'][0] | K K |caract_ref['K'][0]

- K caract_ref['K’][1]

caract_test['K'1[0] |K

K | caract_ref['K’1[2]

5. Ecrire la fonction calcul_distances(carac_ref:dict, carac_test:array)->dict
qui prend en argument le dictionnaire des tableaux catégorisés et un tableau associé au
caractere a tester et qui renvoie le dictionnaire des distances.

Tester : >>> calcul_distances(caract_ref,caract_test['K'][0])

{'K': [np.float32(8.355455), np.float32(8.961497),np.float32(9.905888)],
'P': [np.float32(7.4346333), np.float32(9.240917)],
'?': [np.float32(8.358953)1}

TD : RECONNAISSANCE DE CARACTERES AVEC KNN

Pour information, les distances calculées sont les suivantes :

d=8.36
|< caract_ref['K'][0]

d=8.96
K caract_ref['K’'][1]

K caract_ref['K’'][2]

d=7.43
P [caract_ref[‘P'][0]

caract_test['K'][0] ' d=9.24
' P|caract_ref[‘P'][1]

d=8.36
? [caract_ref[’?]1[0]

La suite consiste a déterminer les K plus petites distances et a extraire les clés
correspondantes, puis parmi ces clés déterminer la clé majoritaire. Une méthode
envisageable est de trier les distances par ordre croissant pour prendre les K premiers
éléments. On suppose qu’il y a au total n images de caracteres de référence sur I’'ensemble
des symboles.

6. En se placant dans le pire des cas, indiquer le nom d’une méthode de tri performante
envisageable, en précisant sa complexité temporelle en fonction de n.

Une méthode plus efficace est envisagée pour extraire directement les K plus petits
éléments. Elle consiste a construire par tri par insertion la liste de taille K. L’algorithme

correspondant est donné ci-dessous.

7. Compléter les 3 zones manquantes dans cet algorithme.

def Kvoisins(distances :dict ,K:int)->list :
voisins = [(float(”inf"),””) for k in range(K)]
for lettre in distances:
d = distances[lettre]
for j in range(...............) :
if
k = len(voisins)-1
while ...
voisins [k] = voisins[k-1]
k =k -1
voisins [k] = [d[j], lettre]
return voisins

Tester : >>> Kvoisins(distances,6)
[[np.float32(7.4346333), 'P'1l, [np.float32(8.355455), 'K'],
[np.float32(8.358953), '?'1], [np.float32(8.961497), 'K'l,
[np.float32(9.246917), 'P'1l, [np.float32(9.905888), 'K'l]

TD : RECONNAISSANCE DE CARACTERES AVEC KNN

8. Préciser la complexité temporelle asymptotique dans le pire des cas de cet algorithme en
fonction de n et de K. Comparer avec |'utilisation d’un tri classique sachant que n est
grand et K ne dépassera pas 5.

9. Ecrire une fonction symbole_majoritaire(voisins:list)->str qui, a partir de la liste
voisins renvoyée par la fonction Kvoisins renvoie le symbole majoritaire.

Tester :

>>> yoisins =

Kvoisins(distances, 5)

>>> symbole_majoritaire(voisins)

IPI

On teste I'algorithme sur les caractéres extraits dans la partie précédente ("Beauté,"). On
obtient les résultats suivants :

Nombre de | Type d'éléments dans la base de oy Caracteres
- . Nombre d’'éléments dans la base n
voisins K données obtenus
1 fonte similaire au texte analysé 79 images correspondant aux 79 "Bssil!-,"
symboles
4 fonte similaire au texte analysé 79 images correspondant aux 79 "Bssil-,"
symboles
40 fontes proches de celle du texte | 40*79 images correspondant aux i
1 . "Bsauté,"
analysé 79 symboles
40 fontes proches de celle du texte | 40*79 images correspondant aux 3
4 . "Bsauté,"
analysé 79 symboles
1 40 fontes pour 8 polices difféerentes 320779 images correspondant aux "Beauté,"
79 symboles
4 40 fontes pour 8 polices différentes 32079 images correspondant aux "Beauté,"
79 symboles

10. Commenter les résultats obtenus.

Le sujet s’arréte sur cette derniére question, mais nous allons continuer pour mettre en
ceuvre |'algorithme KNN sur quelques exemples et tester sa robustesse.

IV) EXPERIMENTATIONS SUR LA RECONNAISSANCE DE MOTS

Le dossier « test_mot » contient les symboles de la phrase "Beauté," apres numérisation et

traitement.

11. Compléter la fonction Lire_test_mot(repertoire) quirenvoie un dictionnaire sous la

forme:

symboles_numpy = {0 :

(array_image_numpy_image00, symbole_image00),

1 : (array_image_numpy_image01, symbole_image01),

-}

Ou chaque array correspond au contenu numérique des images dans le répertoire

« test_mot ».

Par exemple pour le mot "Beauté," :

{0:

(array([[...11,

‘B'), 1:

(array([[...11,

‘e’), ...}

TD : RECONNAISSANCE DE CARACTERES AVEC KNN

La fonction liste_fichiers_repertoire(repertoire) permet de retourner la liste de
tous les fichiers contenus dans un répertoire.

Nous allons maintenant utiliser les bases d’apprentissage « base_référence » et
« base_11x79 » afin de reconnaitre le mot avec la méthode KNN.

12. Ecrire la fonction KNN_test (symboles_numpy, k, base) quiretrouve le mot codé dans
le dictionnaire symboles_numpy :
- Récupere la liste de tous les fichiers contenus dans le dossier base ;
- Construit le dictionnaire carac_ref contenant I'ensemble des array des images du
dossier base ;
- Pour chaque symbole dans le dictionnaire symboles_numpy :

o Calcule les distances entre ce symbole et les images dans le dictionnaire
carac_ref ;

o Récupére les k plus proches voisins ;
o Sélectionne le meilleur candidat par vote majoritaire

Tester : >>> KNN_test(symboles_numpy,1, "base_référence")
["I"I |||||, |a|’ IQI, |'L|’ |||||, |r,|]
>>> KNN_test(symboles_numpy,1, "base_11x79")
[IBI, |e|’ |a|’ IUI, Itl, |é|’ |,|]

Si vous souhaitez faire des essais sur d’autres mots, vous pouvez construire un mot avec le
script « construction_test_mot.py » en lancant la commande :

» python construction_test_mot.py --mot "Bonjour!"

Cela créera les images « numérisées » du mot dans le répertoire « test_mot » :

B 0 n] O u I !
00_majuscules_1. 01_minuscules_1 02_minuscules_1 03_minuscules_9. 04_minuscules_1 05_minuscules_2 06_minuscules_1 07 _special_6.png
png 4.png 3.png png 4.png 0.png 7.png

>>> KNN_test(symboles_numpy,1, "base_référence")
[nln’ |||||, |q|’ |j|’ |||||, |q|’ |||||, |(|]

>>> KNN_test(symboles_numpy,1, "base_11x79")
[IBII l0l, lnl, ljl, l0l, lUl, lr\l, III]

>>> KNN_test(symboles_numpy, 4, "base_11x79")
[IBII |0|’ lnl, ljl, |0|’ lUl, lr‘l, l!l]

Si votre PC le permet, vous pouvez également essayer avec la « base_41x79 » :

>>> KNN_test(symboles_numpy,1, "base_41x79")
[IBII |0|’ lnl, ljl, |0|’ lUl, lr‘l, l!l]

TD : RECONNAISSANCE DE CARACTERES AVEC KNN

V) MATRICE DE CONFUSION

Les tests précédents ont mis en évidence que notre algorithme KNN n’est pas parfait et se
trompe quelques fois sur I'identification des symboles (en particulier lorsque la base
d’apprentissage est petite).

Pour évaluer le succes de I'algorithme KNN, on utilise une matrice de confusion. Dans notre
application, nous avons deux types de données :

- Les symboles appris ;

- Les symboles recherchés.

La matrice est définie ainsi :
- Chaque ligne correspond a un symbole recherché ;
- Chaque colonne représente le symbole trouvé.

En nous adaptant aux données de ce TP, cela donne :
- Lignel:index du symbole dans la liste symboles_confusion=["ABCDEFGHIJKLMNOPQ
RSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789,.:,; ' (1?)éeacuéisa"]
- Colonne c: index du symbole trouvé dans la méme liste.

13. Indiquer ce que voudrait dire M(1,0) = 1.

Les 79 symboles « numérisés » a utiliser pour construire la matrice de confusion sont dans le
dossier « test_confusion ».

14. Ecrire la fonction Matrice_confusion(k, base) qui retourne la matrice de confusion sur
les symboles de la liste symboles_confusion pour un KNN avec les k plus proches
voisins et en utilisant la base base comme source d’apprentissage.

Tester : >>> matrice = Matrice_confusion(1,"base_référence")
>>> afficher_matrice_confusion(matrice)
>>> matrice = Matrice_confusion(1,"base_11x79")
>>> afficher_matrice_confusion(matrice)

Matrice de confusion Matrice de confusion

T

[
L]

Caractére réel
[]

e 5 W s 2 O S AN OTOE e Ta T
L]
-
o
@

Caractére réel

. > i ; IEH

| o T T T e T e e T

o Caractére prédit

AARAARARSES o SRR EAS
Caractére prédit

15. Visuellement, que pouvez-vous conclure du KNN a partir de ces matrices de confusion ?
Tester également avec d’autres valeurs de K.

10

TD : RECONNAISSANCE DE CARACTERES AVEC KNN

Le taux de réussite est calculé avec la relation suivante :

tr(M)
Acc = ————
Xij M

16. Ecrire la fonction Taux_de_reussite(matrice) qui calcule le taux de réussite

Tester : >>> matrice = Matrice_confusion(1, "base_référence")
>>> Taux_de_reussite(matrice)
0.10126582278481013
>>> matrice = Matrice_confusion(1, "base_41x79")

>>> Taux_de_reussite(matrice)
0.9493670886075949

>>> matrice = Matrice_confusion(4,"base_11x79")

>>> Taux_de_reussite(matrice)
0.9620253164556962

