
TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN 

1 

TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN 
 
(TD inspiré de CCINP-PSI-Info 2023) 
 
La reconnaissance optique de caractères (OCR) existe depuis de nombreuses années mais les 
récents travaux d’intelligence artificielle (apprentissage profond) ont considérablement 
augmenté les performances de la reconnaissance de documents. 
 
L’objectif du travail proposé dans le sujet original est de découvrir différentes étapes de la 
numérisation d’un document en explorant plusieurs algorithmes utilisés pour obtenir 
finalement un document éditable conforme à l’original. 
 
Les parties abordées dans le sujet sont les suivantes : 

- Partie 1 : Acquisition d’un document et pré-traitement dans le but d’obtenir une 
image numérique pertinente ; 

- Partie 2 : Reconnaissance du contenu qui correspond à l’extraction du texte et de sa 
structure ; 

- Partie 3 : Reconnaissance des caractères par identification à l’aide d’une base de 
données. 

La reconnaissance de caractères est une chaîne de traitement complète dont le KNN est 
l'étape finale. Ce TD se concentre sur la reconnaissance des caractères par identification 
développée dans la partie 3. Voici un résumé des parties qui la précèdent : 

I) PARTIE 1 : ACQUISITION D’UN DOCUMENT 
Le document est numérisé. Pour diminuer la taille du document afin de pouvoir plus 
facilement le traiter, on réalise tout d’abord une conversion en niveaux de gris de l’image. La 
formule utilisée pour déterminer la valeur d’un pixel gris en fonction des trois couleurs d’un 
pixel (R rouge, G vert, B bleu) est la suivante : 

𝑝𝑖𝑥𝐺𝑟𝑖𝑠 = 0,299 ∙ 𝑅 + 0,587 ∙ 𝐺 + 0,114 ∙ 𝐵  

On applique ensuite une binarisation (seuil) pour n'avoir que du noir (0) et du blanc (255). La 
difficulté de cette technique de binarisation est le choix de la valeur seuil pour des images 
ayant des problèmes d’éclairage. Le sujet aborde ultérieurement une technique de 
restauration qui peut être utilisée pour remplacer la binarisation par seuil standard. 

II) PARTIE 2 : RECONNAISSANCE DU DOCUMENT 
Rotation : L’image scannée peut avoir un problème de rotation qu’il convient de corriger. On 
redresse donc l'image si elle a été scannée de travers en utilisant une matrice de rotation et 
une interpolation bilinéaire pour éviter la pixellisation. 
 
Pour faire tourner le point de coordonnées (i, j) 
autour du point O (centre de l’image) d’un angle α, 
on applique une rotation à l’aide d’une matrice de 
rotation : 

(
𝑛𝑖 − 𝑝 2⁄

𝑛𝑗 − 𝑞 2⁄
) = (

𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼
−𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼

) (
𝑖 − 𝑝 2⁄

𝑗 − 𝑞 2⁄
) 
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Naïvement, on pourrait penser que pour réaliser la rotation, il suffit de parcourir chaque 
pixel de l’image initiale en lui appliquant la rotation définie précédemment. Mais les indices 
étant des entiers, on se rend compte que certains pixels de la nouvelle image ne sont jamais 
calculés et qu’il peut apparaître des problèmes de dépassement de taille d’image : 

 

L’algorithme de rotation consiste donc, pour chaque pixel de la nouvelle 
image de coordonnées (ni, nj), à trouver ses coordonnées (i, j) par une 
rotation d’angle −α dans l’image initiale. La position du pixel virtuel ainsi 
trouvée est en fait un couple de réels (x, y). Le pixel virtuel est ainsi 
entouré de 4 pixels dans l’image initiale dont les abscisses sont comprises 
entre int(x) et int(x)+1 et les ordonnées entre int(y) et int(y)+1. 
 
Pour trouver la valeur du pixel virtuel, on utilise la valeur des 4 pixels voisins en réalisant une 
approximation bilinéaire qui consiste : 

- En prenant les deux pixels voisins de la première ligne, à trouver la valeur du niveau 
de gris du pixel virtuel en supposant une évolution linéaire selon la coordonnée y 
entre le pixel de gauche et le pixel de droite ; 

- À faire de même en prenant les pixels de la deuxième ligne ; 
- Enfin en travaillant sur la coordonnée x, à supposer une évolution linéaire entre les 

deux valeurs trouvées aux deux étapes précédentes. 
 
Voici quelques TD disponibles sur le site de https://www.cpge-sii.com/informatique/itc1/ de 
M. DEFAUCHY sur ces thèmes :  

- TD « 7-2 - Détection de contours – Convolution » 
- TD « 7-3 – Transformations » 
- TD « 7-17 - Recadrage projectif » 

 
Segmentation : Après rotation de l’image, on applique la segmentation. La segmentation 
consiste à découper l’image en plusieurs 
éléments de manière à pouvoir ensuite traiter 
chacun des éléments. Il faut dans l’image 
pouvoir dissocier les lignes, les mots puis les 
lettres. L’idée est de construire la liste du 
nombre de pixels noirs par ligne (histogramme 
horizontal) pour isoler les lignes de texte, puis 
par colonne (histogramme vertical) pour isoler 
chaque caractère. 

En appliquant cette détection de ligne 
directement sur l’image mal orientée, il en 
résulte une erreur de détection. En effet, si on 
observe l’histogramme dans ce cas, on constate 
qu’il n’y a plus de zones avec des pixels blancs 
détectées. Cela permet de détecter 
automatiquement la bonne orientation en 
travaillant sur la maximisation du nombre de 0. 

https://www.cpge-sii.com/informatique/itc1/
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Après avoir séparé les lignes, en appliquant une méthode similaire, on peut extraire les 
caractères sur chacune de ces lignes : 

 
Restauration : Les images de caractères peuvent être bruitées compte tenu d’une mauvaise 
résolution ou de parasites apparaissant pendant un scan. De même, la technique de 
binarisation proposée initialement ne donne pas toujours un résultat correct si le seuil est 
mal choisi. Le sujet propose alors d’étudier la méthode du flot maximal (ou méthode de la 
coupe minimale) reposant sur la représentation par un graphe de l’image à restaurer est 
souvent utilisée pour pallier ces problèmes. 

III) PARTIE 3 : DÉTERMINATION DES CARACTÈRES 
Une fois les images de lettres isolées, il s’agit de reconnaître la lettre correspondante. 
Différentes méthodes peuvent être employées. Le sujet étudie une méthode 
d’apprentissage automatique basée sur les K plus proches voisins. 
 
Le principe de cette méthode consiste à comparer chaque caractère à un ensemble de 
caractères définis dans une base de données. 
 
On suppose qu’on dispose d’une liste fichiers_car_ref contenant les noms des fichiers 
images d’un grand nombre de caractères ayant des fontes proches de celles du texte scanné. 
Le nom de chaque fichier est défini de la manière suivante : 

nomFonte + "_" + nomCatégorie + taillePolice + "_" + idSymbole + ".png" 

Les catégories sont définies par la liste : 

categories = ["majuscules","minuscules","chiffres","special"] 

Les symboles considérés sont définis par la liste : 

symboles = ["ABCDEFGHIJKLMNOPQRSTUVWXYZ","abcdefghijklmnopqrstuvwxyz",  

"0123456789",".:,;'(!?)éèàçùêûâ"]. 
 
On compte 79 symboles différents. Exemple : Zurich Light BT_majuscules18_10.png 
pour la majuscule K de la police Zurich Light BT en taille 18. 
 

III.1. Installation des ressources pour le TD 

Télécharger https://www.informatique-f1.fr/IA/TD2_KNN_dataset.zip et extraire son 
contenu dans votre répertoire de travail. 
 
Ce dossier contient l’ensemble des ressources d’images 
nécessaires pour entraîner et tester un classifieur KNN de 
reconnaissance de caractères. Il regroupe des bibliothèques 
contenant des symboles de la police de référence qui 
serviront à fabriquer des phrases de test et de polices 
similaires. La taille des images est de 28x28 pixels. 

https://www.informatique-f1.fr/IA/TD2_KNN_dataset.zip


TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN 

4 

Le dossier « base_référence » contient 79 images (une par symbole) rendues avec la police 
de référence (Zurich Light BT). Voici quelques exemples : 

 
Le dossier « base_11x79 » contient 11×79 images (les mêmes 79 symboles rendus avec 10 
polices supplémentaires visuellement proches de la référence). Voici quelques 
exemples pour le symbole K : 

 
 
Le script « construction_test_mot.py » assemble un mot de votre choix en copiant, 
caractère par caractère, les images déjà présentes dans le dossier « base_référence » vers 
les dossiers « test_mot », afin que vous puissiez tester le KNN sur le mot que vous souhaitez 
analyser, et cela avec une dégradation des symboles afin de simuler la numérisation et pré-
traitements. Nous utiliserons ce script un peu plus tard dans le TD. 
 
L’objectif final du TD est de mettre en œuvre un classifieur k-plus proches voisins (KNN) pour 
reconnaître automatiquement des caractères, puis d’évaluer sa robustesse. 
 
Les catégories et les symboles sont définis dans le fichier python de cette manière : 

# Listes de symboles 
categories = ["majuscules", "minuscules", "chiffres", "special"] 
symboles = ["ABCDEFGHIJKLMNOPQRSTUVWXYZ","abcdefghijklmnopqrstuvwxyz", 
            "0123456789",".:,;'(!?)éèàçùêûâ"] 

 
On introduit la fonction suivante : 

def lire_symbole_fichier(nomFichier: str) -> str: 
    car = nomFichier.split('_') 
    num = car[2].split('.')[0] 
    var = car[1][:len(car[1])-2] 
    ind = categories.index(var) 
    return symboles[ind][int(num)] 

 
On rappelle que pour une liste L, L.index(val) renvoie la position de val dans la liste L. 
 
1. Indiquer ce que valent les variables car, num, var, ind et ce qui est renvoyé par la 

fonction si nomFichier="Zurich Light BT_majuscules18_10.png". 
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Toutes les images des caractères de référence sont lues et stockées sous forme de tableaux 
array. On définit un dictionnaire carac_ref dont les clés seront les symboles apparaissant 
dans la liste symboles (par exemple "A", "a", ...). À chaque clé sera associée une liste de 
tableaux array représentant des images. 
 
La commande img=imread(nomFichier) permet de lire le fichier image nomFichier et de 
stocker le tableau array à deux dimensions qui représente l’image dans la variable img. 
 
2. Écrire la fonction lire_donnees_ref(dossier:str,fichiers_car_ref:list)->dict 

qui prend en arguments le dossier et la liste des noms de fichiers images contenus dans 
ce dossier fichiers_car_ref et qui renvoie le dictionnaire contenant tous les tableaux 
catégorisés. 
 
Tester : caract_ref=lire_donnees_ref("base_11x79",  

liste_images_à_lire) 
  >>> caract_ref.keys() 
  dict_keys(['K', 'P', ' ?']) 

>>> len(caract_ref['K']) 
3 

  >>> imshow(caract_ref['K'][0],cmap="gray",vmin=0,vmax=1) 
  >>> plt.show() 

 
Un caractère à identifier est également stocké sous forme d’un tableau array nommé 
carac_test. On suppose que les dimensions de ce tableau et de tous les tableaux du 
dictionnaire carac_ref sont les mêmes. 
 
La méthode d’identification utilisée est celle des K plus proches voisins. Elle consiste à 
calculer une distance entre l’image du caractère à identifier et toutes les images de 
référence. En notant (i, j) les coordonnées d’un pixel dans le tableau représentant l’image, 
𝑝𝑖𝑗 le pixel associé à l’image du caractère à identifier et 𝑞𝑖𝑗 celui d’un caractère de référence, 

on calcule pour chaque caractère de référence la distance : 

𝑑 = √∑(𝑝𝑖𝑗 − 𝑞𝑖𝑗)
2

𝑖,𝑗

 

Les distances 𝑑 sont stockées dans un dictionnaire distances où, pour chaque clé égale à 
un symbole de la liste symboles, on associe une liste de distances pour chaque image de 
référence de ce symbole. 
 
3. Écrire une fonction distance(im1:array, im2:array)->float qui calcule la distance 

entre les deux images im1 et im2 supposées de même dimension. 
 
Le fichier source importe la librairie numpy avec la commande : import numpy as np. 
Cette librairie contient une fonction « linalg.norm » dont voici la définition : 

numpy.linalg.norm : linalg.norm(x, ord=None, axis=None, keepdims=False) 
Matrix or vector norm. This function is able to return one of eight different matrix 
norms, or one of an infinite number of vector norms (described below), depending 
on the value of the ord parameter. 
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4. Écrire la même fonction distance_np(im1:array, im2:array)->float mais en 
utilisant la fonction np.linalg.norm() de la librairie numpy. 

Tester : caract_test=lire_donnees_ref("base_référence",  
    ["Zurich Light BT_majuscules18_10.png"]) 

>>> distance(caract_ref['K'][0],caract_ref['K'][0]) 
0.0 

>>> distance(caract_test['K'][0],caract_ref['K'][0]) 
8.355455053460023 

>>> distance(caract_test['K'][0],caract_ref['K'][1]) 
8.961496430503434 

>>> distance(caract_test['K'][0],caract_ref['K'][2]) 
9.905886863045481 

>>> distance_np(caract_ref['K'][0],caract_ref['K'][0]) 
np.float32(0.0) 

>>> distance_np(caract_test['K'][0],caract_ref['K'][0]) 
np.float32(8.355455) 

>>> distance_np(caract_test['K'][0],caract_ref['K'][1]) 
np.float32(8.961497) 

>>> distance_np(caract_test['K'][0],caract_ref['K'][2]) 
np.float32(9.905888) 

 
Pour information, les distances calculées dans les exemples précédents sont les suivantes : 

 
 

5. Écrire la fonction calcul_distances(carac_ref:dict, carac_test:array)->dict 
qui prend en argument le dictionnaire des tableaux catégorisés et un tableau associé au 
caractère à tester et qui renvoie le dictionnaire des distances. 

 
Tester : >>> calcul_distances(caract_ref,caract_test['K'][0]) 
{'K': [np.float32(8.355455), np.float32(8.961497),np.float32(9.905888)], 
'P': [np.float32(7.4346333), np.float32(9.240917)], 
'?': [np.float32(8.358953)]} 
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Pour information, les distances calculées sont les suivantes : 

 
La suite consiste à déterminer les K plus petites distances et à extraire les clés 
correspondantes, puis parmi ces clés déterminer la clé majoritaire. Une méthode 
envisageable est de trier les distances par ordre croissant pour prendre les K premiers 
éléments. On suppose qu’il y a au total n images de caractères de référence sur l’ensemble 
des symboles. 
 
6. En se plaçant dans le pire des cas, indiquer le nom d’une méthode de tri performante 

envisageable, en précisant sa complexité temporelle en fonction de n. 
 
Une méthode plus efficace est envisagée pour extraire directement les K plus petits 
éléments. Elle consiste à construire par tri par insertion la liste de taille K. L’algorithme 
correspondant est donné ci-dessous. 
 
7. Compléter les 3 zones manquantes dans cet algorithme. 

 
Tester : >>> Kvoisins(distances,6) 

[[np.float32(7.4346333), 'P'], [np.float32(8.355455), 'K'], 
[np.float32(8.358953), '?'], [np.float32(8.961497), 'K'], 
[np.float32(9.240917), 'P'], [np.float32(9.905888), 'K']] 
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8. Préciser la complexité temporelle asymptotique dans le pire des cas de cet algorithme en 
fonction de n et de K. Comparer avec l’utilisation d’un tri classique sachant que n est 
grand et K ne dépassera pas 5. 

 
9. Écrire une fonction symbole_majoritaire(voisins:list)->str qui, à partir de la liste 

voisins renvoyée par la fonction Kvoisins renvoie le symbole majoritaire. 
 

Tester :  >>> voisins = Kvoisins(distances,5) 
>>> symbole_majoritaire(voisins) 
'P' 

 
On teste l’algorithme sur les caractères extraits dans la partie précédente ("Beauté,"). On 
obtient les résultats suivants : 
 

 
 
10. Commenter les résultats obtenus. 
 
Le sujet s’arrête sur cette dernière question, mais nous allons continuer pour mettre en 
œuvre l’algorithme KNN sur quelques exemples et tester sa robustesse. 
 

IV) EXPÉRIMENTATIONS SUR LA RECONNAISSANCE DE MOTS 
Le dossier « test_mot » contient les symboles de la phrase "Beauté," après numérisation et 
traitement. 
 
11. Compléter la fonction Lire_test_mot(repertoire) qui renvoie un dictionnaire sous la 

forme : 
 

symboles_numpy = {0 : (array_image_numpy_image00, symbole_image00), 
                     1 : (array_image_numpy_image01, symbole_image01), 

   ...} 
Où chaque array correspond au contenu numérique des images dans le répertoire 
« test_mot ». 

 

Par exemple pour le mot "Beauté," : 

    {0: (array([[...]], ‘B’), 1: (array([[...]], ‘e’), ...}  
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La fonction liste_fichiers_repertoire(repertoire) permet de retourner la liste de 
tous les fichiers contenus dans un répertoire. 
 
Nous allons maintenant utiliser les bases d’apprentissage « base_référence » et 
« base_11x79 » afin de reconnaître le mot avec la méthode KNN. 
 
12. Écrire la fonction KNN_test(symboles_numpy, k, base) qui retrouve le mot codé dans 

le dictionnaire symboles_numpy : 
- Récupère la liste de tous les fichiers contenus dans le dossier base ; 
- Construit le dictionnaire carac_ref contenant l’ensemble des array des images du 

dossier base ; 
- Pour chaque symbole dans le dictionnaire symboles_numpy : 

o Calcule les distances entre ce symbole et les images dans le dictionnaire 
carac_ref ; 

o Récupère les k plus proches voisins ; 
o Sélectionne le meilleur candidat par vote majoritaire 

 
Tester :  >>> KNN_test(symboles_numpy,1,"base_référence") 

["'", "'", 'a', 'Q', 'l', "'", 'r'] 
>>> KNN_test(symboles_numpy,1,"base_11x79") 
['B', 'e', 'a', 'u', 't', 'é', ','] 

 
Si vous souhaitez faire des essais sur d’autres mots, vous pouvez construire un mot avec le 
script « construction_test_mot.py » en lançant la commande : 
 

➢ python construction_test_mot.py --mot "Bonjour!" 
 
Cela créera les images « numérisées » du mot dans le répertoire « test_mot » : 
 

 
 

>>> KNN_test(symboles_numpy,1,"base_référence") 
["'", "'", 'q', 'j', "'", 'q', "'", '('] 
>>> KNN_test(symboles_numpy,1,"base_11x79") 
['B', 'o', 'n', 'j', 'o', 'u', 'r', 'I'] 
>>> KNN_test(symboles_numpy,4,"base_11x79") 
['B', 'o', 'n', 'j', 'o', 'u', 'r', '!'] 

 
Si votre PC le permet, vous pouvez également essayer avec la « base_41x79 » : 
 

>>> KNN_test(symboles_numpy,1,"base_41x79") 
['B', 'o', 'n', 'j', 'o', 'u', 'r', '!'] 
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V) MATRICE DE CONFUSION 
Les tests précédents ont mis en évidence que notre algorithme KNN n’est pas parfait et se 
trompe quelques fois sur l’identification des symboles (en particulier lorsque la base 
d’apprentissage est petite). 
 
Pour évaluer le succès de l’algorithme KNN, on utilise une matrice de confusion. Dans notre 
application, nous avons deux types de données : 

- Les symboles appris ; 
- Les symboles recherchés. 

 
La matrice est définie ainsi : 

- Chaque ligne correspond à un symbole recherché ; 
- Chaque colonne représente le symbole trouvé. 

 
En nous adaptant aux données de ce TP, cela donne : 

- Ligne l : index du symbole dans la liste symboles_confusion=["ABCDEFGHIJKLMNOPQ 
RSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789,.:,;'(!?)éèàçùêûâ"] 

- Colonne c : index du symbole trouvé dans la même liste. 
 
13. Indiquer ce que voudrait dire M(1,0) = 1. 
 
Les 79 symboles « numérisés » à utiliser pour construire la matrice de confusion sont dans le 
dossier « test_confusion ». 
 
14. Écrire la fonction Matrice_confusion(k,base) qui retourne la matrice de confusion sur 

les symboles de la liste symboles_confusion pour un KNN avec les k plus proches 
voisins et en utilisant la base base comme source d’apprentissage. 

 
Tester :  >>> matrice = Matrice_confusion(1,"base_référence") 

>>> afficher_matrice_confusion(matrice) 
>>> matrice = Matrice_confusion(1,"base_11x79") 
>>> afficher_matrice_confusion(matrice) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

15. Visuellement, que pouvez-vous conclure du KNN à partir de ces matrices de confusion ? 
Tester également avec d’autres valeurs de K. 
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Le taux de réussite est calculé avec la relation suivante : 
 

Acc =  
𝑡𝑟(𝑀)

∑ 𝑀𝑖,𝑗𝑖,𝑗
 

 
16. Écrire la fonction Taux_de_reussite(matrice) qui calcule le taux de réussite. 
 

Tester :  >>> matrice = Matrice_confusion(1,"base_référence") 

>>> Taux_de_reussite(matrice) 
0.10126582278481013 
>>> matrice = Matrice_confusion(1,"base_41x79") 
>>> Taux_de_reussite(matrice) 
0.9493670886075949 
>>> matrice = Matrice_confusion(4,"base_11x79") 
>>> Taux_de_reussite(matrice) 
0.9620253164556962 

 
 
 
 
 


