
TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN

1

TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN

(TD inspiré de CCINP-PSI-Info 2023)

La reconnaissance optique de caractères (OCR) existe depuis de nombreuses années mais les
récents travaux d’intelligence artificielle (apprentissage profond) ont considérablement
augmenté les performances de la reconnaissance de documents.

L’objectif du travail proposé dans le sujet original est de découvrir différentes étapes de la
numérisation d’un document en explorant plusieurs algorithmes utilisés pour obtenir
finalement un document éditable conforme à l’original.

Les parties abordées dans le sujet sont les suivantes :

- Partie 1 : Acquisition d’un document et pré-traitement dans le but d’obtenir une
image numérique pertinente ;

- Partie 2 : Reconnaissance du contenu qui correspond à l’extraction du texte et de sa
structure ;

- Partie 3 : Reconnaissance des caractères par identification à l’aide d’une base de
données.

La reconnaissance de caractères est une chaîne de traitement complète dont le KNN est
l'étape finale. Ce TD se concentre sur la reconnaissance des caractères par identification
développée dans la partie 3. Voici un résumé des parties qui la précèdent :

I) PARTIE 1 : ACQUISITION D’UN DOCUMENT
Le document est numérisé. Pour diminuer la taille du document afin de pouvoir plus
facilement le traiter, on réalise tout d’abord une conversion en niveaux de gris de l’image. La
formule utilisée pour déterminer la valeur d’un pixel gris en fonction des trois couleurs d’un
pixel (R rouge, G vert, B bleu) est la suivante :

𝑝𝑖𝑥𝐺𝑟𝑖𝑠 = 0,299 ∙ 𝑅 + 0,587 ∙ 𝐺 + 0,114 ∙ 𝐵

On applique ensuite une binarisation (seuil) pour n'avoir que du noir (0) et du blanc (255). La
difficulté de cette technique de binarisation est le choix de la valeur seuil pour des images
ayant des problèmes d’éclairage. Le sujet aborde ultérieurement une technique de
restauration qui peut être utilisée pour remplacer la binarisation par seuil standard.

II) PARTIE 2 : RECONNAISSANCE DU DOCUMENT
Rotation : L’image scannée peut avoir un problème de rotation qu’il convient de corriger. On
redresse donc l'image si elle a été scannée de travers en utilisant une matrice de rotation et
une interpolation bilinéaire pour éviter la pixellisation.

Pour faire tourner le point de coordonnées (i, j)
autour du point O (centre de l’image) d’un angle α,
on applique une rotation à l’aide d’une matrice de
rotation :

(
𝑛𝑖 − 𝑝 2⁄

𝑛𝑗 − 𝑞 2⁄
) = (

𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼
−𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼

) (
𝑖 − 𝑝 2⁄

𝑗 − 𝑞 2⁄
)

TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN

2

Naïvement, on pourrait penser que pour réaliser la rotation, il suffit de parcourir chaque
pixel de l’image initiale en lui appliquant la rotation définie précédemment. Mais les indices
étant des entiers, on se rend compte que certains pixels de la nouvelle image ne sont jamais
calculés et qu’il peut apparaître des problèmes de dépassement de taille d’image :

L’algorithme de rotation consiste donc, pour chaque pixel de la nouvelle
image de coordonnées (ni, nj), à trouver ses coordonnées (i, j) par une
rotation d’angle −α dans l’image initiale. La position du pixel virtuel ainsi
trouvée est en fait un couple de réels (x, y). Le pixel virtuel est ainsi
entouré de 4 pixels dans l’image initiale dont les abscisses sont comprises
entre int(x) et int(x)+1 et les ordonnées entre int(y) et int(y)+1.

Pour trouver la valeur du pixel virtuel, on utilise la valeur des 4 pixels voisins en réalisant une
approximation bilinéaire qui consiste :

- En prenant les deux pixels voisins de la première ligne, à trouver la valeur du niveau
de gris du pixel virtuel en supposant une évolution linéaire selon la coordonnée y
entre le pixel de gauche et le pixel de droite ;

- À faire de même en prenant les pixels de la deuxième ligne ;
- Enfin en travaillant sur la coordonnée x, à supposer une évolution linéaire entre les

deux valeurs trouvées aux deux étapes précédentes.

Voici quelques TD disponibles sur le site de https://www.cpge-sii.com/informatique/itc1/ de
M. DEFAUCHY sur ces thèmes :

- TD « 7-2 - Détection de contours – Convolution »
- TD « 7-3 – Transformations »
- TD « 7-17 - Recadrage projectif »

Segmentation : Après rotation de l’image, on applique la segmentation. La segmentation
consiste à découper l’image en plusieurs
éléments de manière à pouvoir ensuite traiter
chacun des éléments. Il faut dans l’image
pouvoir dissocier les lignes, les mots puis les
lettres. L’idée est de construire la liste du
nombre de pixels noirs par ligne (histogramme
horizontal) pour isoler les lignes de texte, puis
par colonne (histogramme vertical) pour isoler
chaque caractère.

En appliquant cette détection de ligne
directement sur l’image mal orientée, il en
résulte une erreur de détection. En effet, si on
observe l’histogramme dans ce cas, on constate
qu’il n’y a plus de zones avec des pixels blancs
détectées. Cela permet de détecter
automatiquement la bonne orientation en
travaillant sur la maximisation du nombre de 0.

https://www.cpge-sii.com/informatique/itc1/

TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN

3

Après avoir séparé les lignes, en appliquant une méthode similaire, on peut extraire les
caractères sur chacune de ces lignes :

Restauration : Les images de caractères peuvent être bruitées compte tenu d’une mauvaise
résolution ou de parasites apparaissant pendant un scan. De même, la technique de
binarisation proposée initialement ne donne pas toujours un résultat correct si le seuil est
mal choisi. Le sujet propose alors d’étudier la méthode du flot maximal (ou méthode de la
coupe minimale) reposant sur la représentation par un graphe de l’image à restaurer est
souvent utilisée pour pallier ces problèmes.

III) PARTIE 3 : DÉTERMINATION DES CARACTÈRES
Une fois les images de lettres isolées, il s’agit de reconnaître la lettre correspondante.
Différentes méthodes peuvent être employées. Le sujet étudie une méthode
d’apprentissage automatique basée sur les K plus proches voisins.

Le principe de cette méthode consiste à comparer chaque caractère à un ensemble de
caractères définis dans une base de données.

On suppose qu’on dispose d’une liste fichiers_car_ref contenant les noms des fichiers
images d’un grand nombre de caractères ayant des fontes proches de celles du texte scanné.
Le nom de chaque fichier est défini de la manière suivante :

nomFonte + "_" + nomCatégorie + taillePolice + "_" + idSymbole + ".png"

Les catégories sont définies par la liste :

categories = ["majuscules","minuscules","chiffres","special"]

Les symboles considérés sont définis par la liste :

symboles = ["ABCDEFGHIJKLMNOPQRSTUVWXYZ","abcdefghijklmnopqrstuvwxyz",

"0123456789",".:,;'(!?)éèàçùêûâ"].

On compte 79 symboles différents. Exemple : Zurich Light BT_majuscules18_10.png
pour la majuscule K de la police Zurich Light BT en taille 18.

III.1. Installation des ressources pour le TD

Télécharger https://www.informatique-f1.fr/IA/TD2_KNN_dataset.zip et extraire son
contenu dans votre répertoire de travail.

Ce dossier contient l’ensemble des ressources d’images
nécessaires pour entraîner et tester un classifieur KNN de
reconnaissance de caractères. Il regroupe des bibliothèques
contenant des symboles de la police de référence qui
serviront à fabriquer des phrases de test et de polices
similaires. La taille des images est de 28x28 pixels.

https://www.informatique-f1.fr/IA/TD2_KNN_dataset.zip

TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN

4

Le dossier « base_référence » contient 79 images (une par symbole) rendues avec la police
de référence (Zurich Light BT). Voici quelques exemples :

Le dossier « base_11x79 » contient 11×79 images (les mêmes 79 symboles rendus avec 10
polices supplémentaires visuellement proches de la référence). Voici quelques
exemples pour le symbole K :

Le script « construction_test_mot.py » assemble un mot de votre choix en copiant,
caractère par caractère, les images déjà présentes dans le dossier « base_référence » vers
les dossiers « test_mot », afin que vous puissiez tester le KNN sur le mot que vous souhaitez
analyser, et cela avec une dégradation des symboles afin de simuler la numérisation et pré-
traitements. Nous utiliserons ce script un peu plus tard dans le TD.

L’objectif final du TD est de mettre en œuvre un classifieur k-plus proches voisins (KNN) pour
reconnaître automatiquement des caractères, puis d’évaluer sa robustesse.

Les catégories et les symboles sont définis dans le fichier python de cette manière :

Listes de symboles
categories = ["majuscules", "minuscules", "chiffres", "special"]
symboles = ["ABCDEFGHIJKLMNOPQRSTUVWXYZ","abcdefghijklmnopqrstuvwxyz",
 "0123456789",".:,;'(!?)éèàçùêûâ"]

On introduit la fonction suivante :

def lire_symbole_fichier(nomFichier: str) -> str:
 car = nomFichier.split('_')
 num = car[2].split('.')[0]
 var = car[1][:len(car[1])-2]
 ind = categories.index(var)
 return symboles[ind][int(num)]

On rappelle que pour une liste L, L.index(val) renvoie la position de val dans la liste L.

1. Indiquer ce que valent les variables car, num, var, ind et ce qui est renvoyé par la

fonction si nomFichier="Zurich Light BT_majuscules18_10.png".

TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN

5

Toutes les images des caractères de référence sont lues et stockées sous forme de tableaux
array. On définit un dictionnaire carac_ref dont les clés seront les symboles apparaissant
dans la liste symboles (par exemple "A", "a", ...). À chaque clé sera associée une liste de
tableaux array représentant des images.

La commande img=imread(nomFichier) permet de lire le fichier image nomFichier et de
stocker le tableau array à deux dimensions qui représente l’image dans la variable img.

2. Écrire la fonction lire_donnees_ref(dossier:str,fichiers_car_ref:list)->dict

qui prend en arguments le dossier et la liste des noms de fichiers images contenus dans
ce dossier fichiers_car_ref et qui renvoie le dictionnaire contenant tous les tableaux
catégorisés.

Tester : caract_ref=lire_donnees_ref("base_11x79",

liste_images_à_lire)
 >>> caract_ref.keys()
 dict_keys(['K', 'P', ' ?'])

>>> len(caract_ref['K'])
3

 >>> imshow(caract_ref['K'][0],cmap="gray",vmin=0,vmax=1)
 >>> plt.show()

Un caractère à identifier est également stocké sous forme d’un tableau array nommé
carac_test. On suppose que les dimensions de ce tableau et de tous les tableaux du
dictionnaire carac_ref sont les mêmes.

La méthode d’identification utilisée est celle des K plus proches voisins. Elle consiste à
calculer une distance entre l’image du caractère à identifier et toutes les images de
référence. En notant (i, j) les coordonnées d’un pixel dans le tableau représentant l’image,
𝑝𝑖𝑗 le pixel associé à l’image du caractère à identifier et 𝑞𝑖𝑗 celui d’un caractère de référence,

on calcule pour chaque caractère de référence la distance :

𝑑 = √∑(𝑝𝑖𝑗 − 𝑞𝑖𝑗)
2

𝑖,𝑗

Les distances 𝑑 sont stockées dans un dictionnaire distances où, pour chaque clé égale à
un symbole de la liste symboles, on associe une liste de distances pour chaque image de
référence de ce symbole.

3. Écrire une fonction distance(im1:array, im2:array)->float qui calcule la distance

entre les deux images im1 et im2 supposées de même dimension.

Le fichier source importe la librairie numpy avec la commande : import numpy as np.
Cette librairie contient une fonction « linalg.norm » dont voici la définition :

numpy.linalg.norm : linalg.norm(x, ord=None, axis=None, keepdims=False)
Matrix or vector norm. This function is able to return one of eight different matrix
norms, or one of an infinite number of vector norms (described below), depending
on the value of the ord parameter.

TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN

6

4. Écrire la même fonction distance_np(im1:array, im2:array)->float mais en
utilisant la fonction np.linalg.norm() de la librairie numpy.

Tester : caract_test=lire_donnees_ref("base_référence",
 ["Zurich Light BT_majuscules18_10.png"])

>>> distance(caract_ref['K'][0],caract_ref['K'][0])
0.0

>>> distance(caract_test['K'][0],caract_ref['K'][0])
8.355455053460023

>>> distance(caract_test['K'][0],caract_ref['K'][1])
8.961496430503434

>>> distance(caract_test['K'][0],caract_ref['K'][2])
9.905886863045481

>>> distance_np(caract_ref['K'][0],caract_ref['K'][0])
np.float32(0.0)

>>> distance_np(caract_test['K'][0],caract_ref['K'][0])
np.float32(8.355455)

>>> distance_np(caract_test['K'][0],caract_ref['K'][1])
np.float32(8.961497)

>>> distance_np(caract_test['K'][0],caract_ref['K'][2])
np.float32(9.905888)

Pour information, les distances calculées dans les exemples précédents sont les suivantes :

5. Écrire la fonction calcul_distances(carac_ref:dict, carac_test:array)->dict
qui prend en argument le dictionnaire des tableaux catégorisés et un tableau associé au
caractère à tester et qui renvoie le dictionnaire des distances.

Tester : >>> calcul_distances(caract_ref,caract_test['K'][0])
{'K': [np.float32(8.355455), np.float32(8.961497),np.float32(9.905888)],
'P': [np.float32(7.4346333), np.float32(9.240917)],
'?': [np.float32(8.358953)]}

TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN

7

Pour information, les distances calculées sont les suivantes :

La suite consiste à déterminer les K plus petites distances et à extraire les clés
correspondantes, puis parmi ces clés déterminer la clé majoritaire. Une méthode
envisageable est de trier les distances par ordre croissant pour prendre les K premiers
éléments. On suppose qu’il y a au total n images de caractères de référence sur l’ensemble
des symboles.

6. En se plaçant dans le pire des cas, indiquer le nom d’une méthode de tri performante

envisageable, en précisant sa complexité temporelle en fonction de n.

Une méthode plus efficace est envisagée pour extraire directement les K plus petits
éléments. Elle consiste à construire par tri par insertion la liste de taille K. L’algorithme
correspondant est donné ci-dessous.

7. Compléter les 3 zones manquantes dans cet algorithme.

Tester : >>> Kvoisins(distances,6)

[[np.float32(7.4346333), 'P'], [np.float32(8.355455), 'K'],
[np.float32(8.358953), '?'], [np.float32(8.961497), 'K'],
[np.float32(9.240917), 'P'], [np.float32(9.905888), 'K']]

TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN

8

8. Préciser la complexité temporelle asymptotique dans le pire des cas de cet algorithme en
fonction de n et de K. Comparer avec l’utilisation d’un tri classique sachant que n est
grand et K ne dépassera pas 5.

9. Écrire une fonction symbole_majoritaire(voisins:list)->str qui, à partir de la liste

voisins renvoyée par la fonction Kvoisins renvoie le symbole majoritaire.

Tester : >>> voisins = Kvoisins(distances,5)
>>> symbole_majoritaire(voisins)
'P'

On teste l’algorithme sur les caractères extraits dans la partie précédente ("Beauté,"). On
obtient les résultats suivants :

10. Commenter les résultats obtenus.

Le sujet s’arrête sur cette dernière question, mais nous allons continuer pour mettre en
œuvre l’algorithme KNN sur quelques exemples et tester sa robustesse.

IV) EXPÉRIMENTATIONS SUR LA RECONNAISSANCE DE MOTS
Le dossier « test_mot » contient les symboles de la phrase "Beauté," après numérisation et
traitement.

11. Compléter la fonction Lire_test_mot(repertoire) qui renvoie un dictionnaire sous la

forme :

symboles_numpy = {0 : (array_image_numpy_image00, symbole_image00),
 1 : (array_image_numpy_image01, symbole_image01),

 ...}
Où chaque array correspond au contenu numérique des images dans le répertoire
« test_mot ».

Par exemple pour le mot "Beauté," :

 {0: (array([[...]], ‘B’), 1: (array([[...]], ‘e’), ...}

TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN

9

La fonction liste_fichiers_repertoire(repertoire) permet de retourner la liste de
tous les fichiers contenus dans un répertoire.

Nous allons maintenant utiliser les bases d’apprentissage « base_référence » et
« base_11x79 » afin de reconnaître le mot avec la méthode KNN.

12. Écrire la fonction KNN_test(symboles_numpy, k, base) qui retrouve le mot codé dans

le dictionnaire symboles_numpy :
- Récupère la liste de tous les fichiers contenus dans le dossier base ;
- Construit le dictionnaire carac_ref contenant l’ensemble des array des images du

dossier base ;
- Pour chaque symbole dans le dictionnaire symboles_numpy :

o Calcule les distances entre ce symbole et les images dans le dictionnaire
carac_ref ;

o Récupère les k plus proches voisins ;
o Sélectionne le meilleur candidat par vote majoritaire

Tester : >>> KNN_test(symboles_numpy,1,"base_référence")

["'", "'", 'a', 'Q', 'l', "'", 'r']
>>> KNN_test(symboles_numpy,1,"base_11x79")
['B', 'e', 'a', 'u', 't', 'é', ',']

Si vous souhaitez faire des essais sur d’autres mots, vous pouvez construire un mot avec le
script « construction_test_mot.py » en lançant la commande :

➢ python construction_test_mot.py --mot "Bonjour!"

Cela créera les images « numérisées » du mot dans le répertoire « test_mot » :

>>> KNN_test(symboles_numpy,1,"base_référence")
["'", "'", 'q', 'j', "'", 'q', "'", '(']
>>> KNN_test(symboles_numpy,1,"base_11x79")
['B', 'o', 'n', 'j', 'o', 'u', 'r', 'I']
>>> KNN_test(symboles_numpy,4,"base_11x79")
['B', 'o', 'n', 'j', 'o', 'u', 'r', '!']

Si votre PC le permet, vous pouvez également essayer avec la « base_41x79 » :

>>> KNN_test(symboles_numpy,1,"base_41x79")
['B', 'o', 'n', 'j', 'o', 'u', 'r', '!']

TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN

10

V) MATRICE DE CONFUSION
Les tests précédents ont mis en évidence que notre algorithme KNN n’est pas parfait et se
trompe quelques fois sur l’identification des symboles (en particulier lorsque la base
d’apprentissage est petite).

Pour évaluer le succès de l’algorithme KNN, on utilise une matrice de confusion. Dans notre
application, nous avons deux types de données :

- Les symboles appris ;
- Les symboles recherchés.

La matrice est définie ainsi :

- Chaque ligne correspond à un symbole recherché ;
- Chaque colonne représente le symbole trouvé.

En nous adaptant aux données de ce TP, cela donne :

- Ligne l : index du symbole dans la liste symboles_confusion=["ABCDEFGHIJKLMNOPQ
RSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789,.:,;'(!?)éèàçùêûâ"]

- Colonne c : index du symbole trouvé dans la même liste.

13. Indiquer ce que voudrait dire M(1,0) = 1.

Les 79 symboles « numérisés » à utiliser pour construire la matrice de confusion sont dans le
dossier « test_confusion ».

14. Écrire la fonction Matrice_confusion(k,base) qui retourne la matrice de confusion sur

les symboles de la liste symboles_confusion pour un KNN avec les k plus proches
voisins et en utilisant la base base comme source d’apprentissage.

Tester : >>> matrice = Matrice_confusion(1,"base_référence")

>>> afficher_matrice_confusion(matrice)
>>> matrice = Matrice_confusion(1,"base_11x79")
>>> afficher_matrice_confusion(matrice)

15. Visuellement, que pouvez-vous conclure du KNN à partir de ces matrices de confusion ?
Tester également avec d’autres valeurs de K.

TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN

11

Le taux de réussite est calculé avec la relation suivante :

Acc =
𝑡𝑟(𝑀)

∑ 𝑀𝑖,𝑗𝑖,𝑗

16. Écrire la fonction Taux_de_reussite(matrice) qui calcule le taux de réussite.

Tester : >>> matrice = Matrice_confusion(1,"base_référence")

>>> Taux_de_reussite(matrice)
0.10126582278481013
>>> matrice = Matrice_confusion(1,"base_41x79")
>>> Taux_de_reussite(matrice)
0.9493670886075949
>>> matrice = Matrice_confusion(4,"base_11x79")
>>> Taux_de_reussite(matrice)
0.9620253164556962

